Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(15): 10388-10396, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567867

RESUMO

Interferometric scattering microscopy (iSCAT) has rapidly developed as a quantitative tool for the label-free detection of single macromolecules and nanoparticles. In practice, this measurement records the interferometric scattering signal of individual nanoparticles in solution as they land and stick on a coverslip, exhibiting an intensity that varies linearly with particle volume and an adsorption rate that reflects the solution-phase transport kinetics of the system. Together, such measurements provide a multidimensional gauge of the particle size and concentration in solution over time. However, the landing kinetics of particles in solution also manifest a measurement frequency limitation imposed by the slow long-range mobility of particle diffusion to the measurement interface. Here we introduce an effective means to overcome the inherent diffusion-controlled sampling limitation of spontaneous mass photometry. We term this methodology electrophoretic deposition interferometric scattering microscopy (EPD-iSCAT). This approach uses a coverslip supporting a conductive thin film of indium tin oxide (ITO). Charging this ITO film to a potential of around +1 V electrophoretically draws charged nanoparticles from solution and binds them in the focal plane of the microscope. Regulating this potential offers a direct means of controlling particle deposition. Thus, we find for a 0.1 nM solution of 50 nm polystyrene nanoparticles that the application of +1 V to an EPD-iSCAT coverslip assembly drives an electrophoretic deposition rate constant of 1.7 s-1 µm-2 nM-1. Removal of the potential causes deposition to cease. This user control of EPD-iSCAT affords a means to apply single-molecule mass photometry to monitor long-term changes in solution, owing to slow kinetic processes. In contrast with conventional coverslips chemically derivatized with charged thin films, EPD-iSCAT maintains a deposition rate that varies linearly with the bulk concentration.

2.
Nano Lett ; 24(6): 1874-1881, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295760

RESUMO

Traditional single-nanoparticle sizing using optical microscopy techniques assesses size via the diffusion constant, which requires suspended particles to be in a medium of known viscosity. However, these assumptions are typically not fulfilled in complex natural sample environments. Here, we introduce dual-angle interferometric scattering microscopy (DAISY), enabling optical quantification of both size and polarizability of individual nanoparticles (radius <170 nm) without requiring a priori information regarding the surrounding media or super-resolution imaging. DAISY achieves this by combining the information contained in concurrently measured forward and backward scattering images through twilight off-axis holography and interferometric scattering (iSCAT). Going beyond particle size and polarizability, single-particle morphology can be deduced from the fact that the hydrodynamic radius relates to the outer particle radius, while the scattering-based size estimate depends on the internal mass distribution of the particles. We demonstrate this by differentiating biomolecular fractal aggregates from spherical particles in fetal bovine serum at the single-particle level.

3.
J Psychiatr Pract ; 29(4): 308-313, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449828

RESUMO

OBJECTIVE: Lock to Live is an interactive web-based lethal means safety decision aid that promotes temporary storage of firearms and medications. It has primarily been provided to suicidal patients in emergency department settings. The goal of this study was to evaluate the feasibility and acceptability of the Lock to Live decision aid with hospitalized adults at increased risk of suicide. METHODS: Subjects provided demographic information and completed the Columbia-Suicide Severity Rating Scale after which they completed the Lock to Live program followed by a survey. RESULTS: Twenty participants were recruited for this study, 5 of whom had access to firearms and 19 of whom had access to medications. Lock to Live was feasible to use as the mean length of time to complete the program was 10.0±5.3 minutes. It was acceptable to most participants as 75% of participants found it to be easy to use, and 65% of participants agreed that Lock to Live was helpful in making a decision about changing access to firearms/medications. CONCLUSION: Lock 2 Live decision aid appears to be a feasible and acceptable tool for hospitalized patients at risk for suicide.


Assuntos
Armas de Fogo , Suicídio , Humanos , Adulto , Estudos de Viabilidade , Ideação Suicida , Técnicas de Apoio para a Decisão , Internet
4.
Nat Commun ; 13(1): 7492, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470883

RESUMO

Object detection is a fundamental task in digital microscopy, where machine learning has made great strides in overcoming the limitations of classical approaches. The training of state-of-the-art machine-learning methods almost universally relies on vast amounts of labeled experimental data or the ability to numerically simulate realistic datasets. However, experimental data are often challenging to label and cannot be easily reproduced numerically. Here, we propose a deep-learning method, named LodeSTAR (Localization and detection from Symmetries, Translations And Rotations), that learns to detect microscopic objects with sub-pixel accuracy from a single unlabeled experimental image by exploiting the inherent roto-translational symmetries of this task. We demonstrate that LodeSTAR outperforms traditional methods in terms of accuracy, also when analyzing challenging experimental data containing densely packed cells or noisy backgrounds. Furthermore, by exploiting additional symmetries we show that LodeSTAR can measure other properties, e.g., vertical position and polarizability in holographic microscopy.


Assuntos
Holografia , Microscopia , Algoritmos , Aprendizado de Máquina
5.
Nano Lett ; 21(19): 8503-8509, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34403260

RESUMO

During diffusion of nanoparticles bound to a cellular membrane by ligand-receptor pairs, the distance to the laterally mobile interface is sufficiently short for their motion to depend not only on the membrane-mediated diffusivity of the tethers but also in a not yet fully understood manner on nanoparticle size and interfacial hydrodynamics. By quantifying diffusivity, velocity, and size of individual membrane-bound liposomes subjected to a hydrodynamic shear flow, we have successfully separated the diffusivity contributions from particle size and number of tethers. The obtained diffusion-size relations for synthetic and extracellular lipid vesicles are not well-described by the conventional no-slip boundary condition, suggesting partial slip as well as a significant diffusivity dependence on the distance to the lipid bilayer. These insights, extending the understanding of diffusion of biological nanoparticles at lipid bilayers, are of relevance for processes such as cellular uptake of viruses and lipid nanoparticles or labeling of cell-membrane-residing molecules.


Assuntos
Bicamadas Lipídicas , Lipossomos , Membrana Celular , Difusão , Membranas
6.
Ann Emerg Med ; 78(3): 459-460, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420563
8.
ACS Nano ; 15(2): 2240-2250, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33399450

RESUMO

Characterization of suspended nanoparticles in their native environment plays a central role in a wide range of fields, from medical diagnostics and nanoparticle-enhanced drug delivery to nanosafety and environmental nanopollution assessment. Standard optical approaches for nanoparticle sizing assess the size via the diffusion constant and, as a consequence, require long trajectories and that the medium has a known and uniform viscosity. However, in most biological applications, only short trajectories are available, while simultaneously, the medium viscosity is unknown and tends to display spatiotemporal variations. In this work, we demonstrate a label-free method to quantify not only size but also refractive index of individual subwavelength particles using 2 orders of magnitude shorter trajectories than required by standard methods and without prior knowledge about the physicochemical properties of the medium. We achieved this by developing a weighted average convolutional neural network to analyze holographic images of single particles, which was successfully applied to distinguish and quantify both size and refractive index of subwavelength silica and polystyrene particles without prior knowledge of solute viscosity or refractive index. We further demonstrate how these features make it possible to temporally resolve aggregation dynamics of 31 nm polystyrene nanoparticles, revealing previously unobserved time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates.

9.
Skeletal Radiol ; 50(5): 973-979, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33067642

RESUMO

OBJECTIVE: A bony spur in a characteristic location involving the proximal humerus is identified on post-operative radiographs in some patients with history of total shoulder arthroplasty. The spur is theorized to represent heterotopic ossification near the attachment site of the pectoralis major tendon on the proximal humerus which is partially detached and then reattached during total shoulder arthroplasty. In this study, we determine the morphology, incidence, demographic associations, and clinical impact of this finding. MATERIALS AND METHODS: This is a single-center, retrospective study of 500 patients who underwent total shoulder arthroplasty (250 standard and 250 reverse technique) between 2012 and 2017. Pre- and post-operative shoulder radiographs were reviewed to identify and measure the characteristic spur; inter-observer agreement was evaluated between the two reviewers. Incidence, demographic associations, and clinical significance were then determined. RESULTS: The study group included 268 men and 234 women with a mean age of 70 (42-89) years, and clinical follow-up of 25 (1-84) months. Characteristic heterotopic ossification was seen in 88 patients (17.6%) and was first noted radiographically at a mean (interquartile range) of 12.1 (11.5-12.8) months after surgery. Male sex (adjusted odds ratio (95% confidence interval), 3.00 (0.68-5.34), p < 0.001) was independently associated with heterotopic ossification. No significant relationships between heterotopic ossification and adverse clinical outcomes were observed. CONCLUSION: Characteristic heterotopic ossification of the proximal humerus in patients status post total shoulder arthroplasty is a common imaging finding that is not associated with adverse clinical outcomes.


Assuntos
Artroplastia do Ombro , Ossificação Heterotópica , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Úmero/diagnóstico por imagem , Úmero/cirurgia , Masculino , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/epidemiologia , Estudos Retrospectivos , Ombro
10.
Anal Chem ; 92(23): 15336-15343, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179908

RESUMO

Research in the field of extracellular vesicles is rapidly expanding and finding footholds in many areas of medical science. However, the availability of methodologies to quantify the concentration of membrane material present in a sample remains limited. Herein, we present a novel approach for the quantification of vesicle material, specifically the quantification of the total lipid membrane surface area, found in a sample using Förster resonance energy transfer (FRET). In this assay, sonication is used to drive the fusion between vesicles in the sample to be quantified and liposomes containing a pair of FRET fluorophores. The change in emission spectrum upon vesicle fusion is directly related to the total membrane surface area of the sample added, and a calibration curve allows for the quantification of a variety of vesicle species, including enveloped viruses, bacterial outer membrane vesicles, and mammalian extracellular vesicles. Without extensive optimization of experimental parameters, we were able to quantify down to ∼109 vesicles/mL, using as little as 60 µL of the sample. The assay precision was comparable to that of a commercial nanoparticle tracking analysis system. While its limit of detection was slightly higher, the FRET assay is superior for the detection of small vesicles, as its performance is vesicle-size-independent. Taken together, the FRET assay is a simple, robust, and versatile method for the quantification of a variety of purified vesicle samples.


Assuntos
Vesículas Extracelulares/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Limite de Detecção , Metabolismo dos Lipídeos , Sonicação
11.
Nanoscale ; 12(20): 11297-11305, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32420581

RESUMO

Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering. Shaped nanoparticles, like triangles and nanorods, can be particularly useful in applications due to the strong localized plasmonic hot-spot that forms at the tips or corners. By placing catalytic, but traditionally weakly- or non-plasmonic nanoparticles, such as metal oxides and metals like palladium, in these hot-spots, an enhanced function for sensing, photocatalysis or optical use is predicted. Here, we present an electrostatic colloidal assembly strategy for nanoparticles, incorporating different sizes, shapes and metal or metal oxide compositions into heterodimers with smaller gaps than are achievable using nanofabrication techniques. This versatile method is demonstrated on 14 combinations, including a variety of shaped gold nanoparticles as well as palladium, iron oxide, and titanium oxide nanoparticles. These colloidal nanoparticles are stabilized with traditional surfactants, such as citrate, CTAB, PVP and oleic acid/oleylamines, indicating the wide applicability of our approach. Heterodimers of gold and palladium are further analyzed using cathodoluminescence to demonstrate the tunability of these "plasmonic molecules". Since systematically altering the absorption and emission of the plasmonic nanoparticles dimers is crucial to extending their functionality, and small gap sizes produce the strongest hot-spots, this method indicates that the electrostatic approach to heterodimer assembly can be useful in creating new nanoparticle dimers for many applications.

12.
Anal Chem ; 92(2): 1908-1915, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31820950

RESUMO

Determination of size and refractive index (RI) of dispersed unlabeled subwavelength particles is of growing interest in several fields, including biotechnology, wastewater monitoring, and nanobubble preparations. Conventionally, the size distribution of such samples is determined via the Brownian motion of the particles, but simultaneous determination of their RI remains challenging. This work demonstrates nanoparticle tracking analysis (NTA) in an off-axis digital holographic microscope (DHM) enabling determination of both particle size and RI of individual subwavelength particles from the combined information about size and optical phase shift. The potential of the method to separate particle populations is demonstrated by analyzing a mixture of three types of dielectric particles within a narrow size range, where conventional NTA methods based on Brownian motion alone would fail. Using this approach, the phase shift allowed individual populations of dielectric beads overlapping in either size or RI to be clearly distinguished and quantified with respect to these properties. The method was furthermore applied for analysis of surfactant-stabilized micro- and nanobubbles, with RI lower than that of water. Since bubbles induce a phase shift of opposite sign to that of solid particles, they were easily distinguished from similarly sized solid particles made up of undissolved surfactant. Surprisingly, the dependence of the phase shift on bubble size indicates that only those with 0.15-0.20 µm radius were individual bubbles, whereas larger bubbles were actually clusters of bubbles. This label-free means to quantify multiple parameters of suspended individual submicrometer particles offers a crucial complement to current characterization strategies, suggesting broad applicability for a wide range of nanoparticle systems.


Assuntos
Ar , Nanopartículas/química , Tamanho da Partícula , Poliestirenos/química , Refratometria , Dióxido de Silício/química , Hexoses/química , Microbolhas , Polissorbatos/química , Tensoativos/química
13.
Nano Lett ; 19(11): 8171-8181, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31639311

RESUMO

Polaritons are compositional light-matter quasiparticles that have enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Recently, plasmon-exciton polaritons (plexcitons) have been realized in hybrid material systems composed of transition metal dichalcogenide (TMDC) materials and metal nanoparticles, expanding polaritonic concepts to room temperature and nanoscale systems that also benefit from the exotic properties of TMDC materials. Despite the enormous progress in understanding TMDC-based plexcitons using optical-based methods, experimental evidence of plexcitons formation has remained indirect and mapping their nanometer-scale characteristics has remained an open challenge. Here, we demonstrate that plexcitons generated by a hybrid system composed of an individual silver nanoparticle and a few-layer WS2 flake can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Experimental anticrossing measurements using the absorption-dominated extinction signal provide the ultimate evidence for plexciton hybridization in the strong coupling regime. Spatially resolved EELS maps reveal the existence of unexpected nanoscale variations in the deep-subwavelength nature of plexcitons generated by this system. These findings pioneer new possibilities for in-depth studies of the local atomic structure dependence of polariton-related phenomena in TMDC hybrid material systems with nanometer spatial resolution.

14.
Phys Rev Lett ; 122(6): 062502, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822058

RESUMO

The region of heavy calcium isotopes forms the frontier of experimental and theoretical nuclear structure research where the basic concepts of nuclear physics are put to stringent test. The recent discovery of the extremely neutron-rich nuclei around ^{60}Ca O. B. Tarasov et al. [Phys. Rev. Lett. 121, 022501 (2018)10.1103/PhysRevLett.121.022501] and the experimental determination of masses for ^{55-57}Ca S. Michimasa et al. [Phys. Rev. Lett. 121, 022506 (2018)10.1103/PhysRevLett.121.022506] provide unique information about the binding energy surface in this region. To assess the impact of these experimental discoveries on the nuclear landscape's extent, we use global mass models and statistical machine learning to make predictions, with quantified levels of certainty, for bound nuclides between Si and Ti. Using a Bayesian model averaging analysis based on Gaussian-process-based extrapolations we introduce the posterior probability p_{ex} for each nucleus to be bound to neutron emission. We find that extrapolations for drip-line locations, at which the nuclear binding ends, are consistent across the global mass models used, in spite of significant variations between their raw predictions. In particular, considering the current experimental information and current global mass models, we predict that ^{68}Ca has an average posterior probability p_{ex}≈76% to be bound to two-neutron emission while the nucleus ^{61}Ca is likely to decay by emitting a neutron (p_{ex}≈46%).

15.
Nat Commun ; 10(1): 340, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664642

RESUMO

Microorganisms adapt their biophysical properties in response to changes in their local environment. However, quantifying these changes at the single-cell level has only recently become possible, largely relying on fluorescent labeling strategies. In this work, we utilize yeast (Saccharomyces cerevisiae) to demonstrate label-free quantification of changes in both intracellular osmolarity and macromolecular concentration in response to changes in the local environment. By combining a digital holographic microscope with a millifluidic chip, the temporal response of cellular water flux was successfully isolated from the rate of production of higher molecular weight compounds, in addition to identifying the produced compounds in terms of the product of their refractive index increment [Formula: see text] and molar mass. The ability to identify, quantify and temporally resolve multiple biophysical processes in living cells at the single cell level offers a crucial complement to label-based strategies, suggesting broad applicability in studies of a wide-range of cellular processes.


Assuntos
Citosol/metabolismo , Saccharomyces cerevisiae/química , Análise de Célula Única/métodos , Água/metabolismo , Transporte Biológico , Citosol/química , Citosol/ultraestrutura , Holografia , Dispositivos Lab-On-A-Chip , Concentração Osmolar , Pressão Osmótica , Refratometria , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Análise de Célula Única/instrumentação , Água/química
16.
Nutr Res ; 70: 50-59, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30032988

RESUMO

The interaction between insulin resistance and inflammation plays a central role in the development of chronic diseases, although the mechanism is not fully understood. We previously demonstrated that regulator of G-protein signaling-10 (RGS10) protein is a negative modulator of the inflammatory response in macrophages and microglia. Because inflammation is a critical component in the development of high fat diet-induced insulin resistance, in this study we investigated whether RGS10 is involved in the diet-dependent regulation of glucose tolerance and insulin sensitivity. We hypothesized that the absence of RGS10 would exaggerate high-fat diet (HFD)-induced insulin resistance and inflammation response. Our results showed that RGS10 knockout (KO) mice fed a HFD gained significantly more weight and developed severe insulin resistance compared to wild-type (WT) mice fed HFD. Furthermore, compared to WT HFD-fed mice, KO mice fed the HFD displayed inflammatory phenotypes such as decreased adipose tissue expression of the anti-inflammatory M2 markers YM1 and Fizz1 and increased expression of the proinflammatory M1 cytokine interleukin 6 in adipose and CD11b, CD68 and interleukin 1ß in liver tissues. The impact of RGS10 deficiency on the exaggeration of HFD-induced insulin resistance and inflammation was ameliorated by oral consumption of green tea extract. Our results demonstrate that RGS10 is an important part of a protective mechanism involved in in regulating metabolic homeostasis by reducing inflammatory responses, which could potentially lead to an innovative new approach targeting inflammation and insulin resistance.


Assuntos
Camellia sinensis , Dieta Hiperlipídica , Inflamação/metabolismo , Resistência à Insulina , Insulina/metabolismo , Obesidade/metabolismo , Proteínas RGS/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Gorduras na Dieta/efeitos adversos , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/prevenção & controle , Inflamação/etiologia , Inflamação/prevenção & controle , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Fenótipo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Chá
17.
ACS Nano ; 11(4): 4265-4274, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28350962

RESUMO

Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.

18.
PLoS One ; 11(1): e0146467, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731540

RESUMO

NEED TO ASSESS THE SKILL OF ECOSYSTEM MODELS: Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. NORTHEAST US ATLANTIS MARINE ECOSYSTEM MODEL: We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. SKILL ASSESSMENT IS BOTH POSSIBLE AND ADVISABLE: We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable to any type of predictive model, and should be considered for use in fields outside ecology (e.g. economics, climate change, and risk assessment).


Assuntos
Ecossistema , Modelos Teóricos , Biomassa , Mudança Climática , Pesqueiros , Humanos , Estados Unidos
19.
Respir Care ; 60(10): 1418-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25944941

RESUMO

BACKGROUND: Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. METHODS: Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. RESULTS: Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. CONCLUSIONS: Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures.


Assuntos
Teste de Materiais , Respiração com Pressão Positiva/instrumentação , Pressão , Desenho de Equipamento , Expiração , Humanos
20.
PLoS One ; 9(10): e109964, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299595

RESUMO

Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and related priorities), external drivers, spatial scales, incentives and objectives, varying approaches to legislation and political will. We compared MSP in Belgium, Norway and the US to illustrate how the integration of stakeholders and governmental levels differs among these countries along the factors mentioned above. Horizontal integration (between sectors) is successful in all three countries, achieved through the use of neutral 'round-table' meeting places for all actors. Vertical integration between government levels varies, with Belgium and Norway having achieved full integration while the US lacks integration of the legislature due to sharp disagreements among stakeholders and unsuccessful partisan leadership. Success factors include political will and leadership, process transparency and stakeholder participation, and should be considered in all MSP development processes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biologia Marinha , Bélgica , Órgãos Governamentais , Humanos , Noruega , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...